The Ramsey Number for 4-Uniform Tight Cycles

نویسندگان

چکیده

A 4-uniform tight cycle is a hypergraph with cyclic ordering of its vertices such that edges are precisely the sets 4 consecutive in ordering. We prove Ramsey number for on 4n \((5 +o(1))n\). This asymptotically tight.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Ramsey Number for 3-Uniform Tight Hypergraph Cycles

Let C (3) n denote the 3-uniform tight cycle, that is the hypergraph with vertices v1, . . . , vn and edges v1v2v3, v2v3v4, . . . , vn−1vnv1, vnv1v2. We prove that the smallest integer N = N(n) for which every red-blue coloring of the edges of the complete 3-uniform hypergraph with N vertices contains a monochromatic copy of C (3) n is asymptotically equal to 4n/3 if n is divisible by 3, and 2n...

متن کامل

The Ramsey Number for Hypergraph Cycles Ii

Let C (3) n denote the 3-uniform tight cycle, that is the hypergraph with vertices v1, . . . , vn and edges v1v2v3, v2v3v4, . . . , vn−1vnv1, vnv1v2. We prove that the smallest integer N = N(n) for which every red-blue coloring of the edges of the complete 3-uniform hypergraph with N vertices contains a monochromatic copy of C (3) n is asymptotically equal to 4n/3 if n is divisible by 3, and 2n...

متن کامل

Improved Bounds for the Ramsey Number of Tight Cycles Versus Cliques

The 3-uniform tight cycle C s has vertex set Zs and edge set {{i, i+ 1, i+ 2} : i ∈ Zs}. We prove that for every s 6≡ 0 (mod 3) and s ≥ 16 or s ∈ {8, 11, 14} there is a cs > 0 such that the 3-uniform hypergraph Ramsey number r(C s ,K n ) satisfies r(C s ,K n ) < 2cn . This answers in strong form a question of the author and Rödl who asked for an upper bound of the form 2n 1+ǫs for each fixed s ...

متن کامل

Hypergraph Ramsey numbers: tight cycles versus cliques

For s ≥ 4, the 3-uniform tight cycle C s has vertex set corresponding to s distinct points on a circle and edge set given by the s cyclic intervals of three consecutive points. For fixed s ≥ 4 and s 6≡ 0 (mod 3) we prove that there are positive constants a and b with 2 < r(C s ,K 3 t ) < 2 bt log . The lower bound is obtained via a probabilistic construction. The upper bound for s > 5 is proved...

متن کامل

A multipartite Ramsey number for odd cycles

In this paper we study multipartite Ramsey numbers for odd cycles. Our main result is the proof of a conjecture of Gyárfás, Sárközy and Schelp [12]. Precisely, let n ≥ 5 be an arbitrary positive odd integer; then in any two-coloring of the edges of the complete 5-partite graph K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1 there is a monochromatic cycle of length n. keywords: cycles, Ramsey number, Regular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Trends in mathematics

سال: 2021

ISSN: ['2297-024X', '2297-0215']

DOI: https://doi.org/10.1007/978-3-030-83823-2_69